

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Aqueous Biphase Systems for Liquid/Liquid Extraction of f-Elements Utilizing Polyethylene Glycols

Robin D. Rogers^a; Andrew H. Bond^a; Cary B. Bauer^a

^a Department of Chemistry, Northern Illinois University DeKalb, IL

To cite this Article Rogers, Robin D. , Bond, Andrew H. and Bauer, Cary B.(1993) 'Aqueous Biphase Systems for Liquid/Liquid Extraction of f-Elements Utilizing Polyethylene Glycols', *Separation Science and Technology*, 28: 1, 139 – 153

To link to this Article: DOI: 10.1080/01496399308019483

URL: <http://dx.doi.org/10.1080/01496399308019483>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

AQUEOUS BIPHASE SYSTEMS FOR LIQUID/LIQUID EXTRACTION
OF f-ELEMENTS UTILIZING POLYETHYLENE GLYCOLS

Robin D. Rogers,* Andrew H. Bond, and Cary B. Bauer
Department of Chemistry
Northern Illinois University
DeKalb, IL 60115

ABSTRACT

Aqueous biphasic systems formed by adding a H_2O soluble polymer (polyethylene glycol) to an aqueous salt solution $((NH_4)_2SO_4$ or K_2CO_3) have been investigated for use in extracting aqueous Am^{3+} , Pu^{4+} , UO_2^{2+} , and Th^{4+} ions into the polymer-rich phase. Extraction occurs only in the presence of complexing dyes which preferentially partition to the polymer-rich phase. Three such dyes, arsenazo III, alizarin complexone, and xylene orange were investigated. Arsenazo III extracts all four metal ions from SO_4^{2-} media but not from CO_3^{2-} solutions. Alizarin complexone quantitatively extracts Th^{4+} and Pu^{4+} from SO_4^{2-} media, while Am^{3+} is the best extracted ion in CO_3^{2-} solution. Xylene orange extracts only Am^{3+} from CO_3^{2-} media. In SO_4^{2-} solutions low concentrations of xylene orange extract Th^{4+} and Pu^{4+} , while Am^{3+} and UO_2^{2+} are extracted at higher concentrations of xylene orange. H_2SO_4 can be used to strip the metal ions, while NH_4OH often but not always enhances the extraction.

INTRODUCTION

Aqueous mixtures of two dissimilar polymers or of a polymer and an inorganic salt are known to separate into two distinct layers (1,2). Each layer consists of 80% or more H_2O on a molar

* Corresponding author

basis. The large concentration of H_2O in each phase allows fully hydrated species to be extracted. It also allows the use of H_2O soluble extractants which have an affinity for the polymer phase. Aqueous biphasic systems have been used for over forty years for the separations of biomaterials such as proteins, blood cells, etc., thus, a significant amount of research has been devoted to the optimization of these systems for specific tasks (2).

We have begun to investigate liquid/liquid extraction of dissolved metal ions with aqueous biphasic systems composed of polyethylene glycol (PEG) as the polymer and an inorganic salt. PEGs are inexpensive, commercially available, nonflammable, nontoxic, and durable. The PEG phases are easily separated by centrifugation. Phase separation times are highly dependent on system composition and temperature, however, dispersion numbers (3) (eq. 1) are comparable to many oil/water systems in use today (e.g., $N_{D_1} = 1.7 \times 10^{-3}$ at 50°C for the $(NH_4)_2SO_4/PEG-2000$ systems investigated in this study).

$$N_{D_1} = \left(\frac{1}{t_B} \right) \sqrt{\Delta Z/g} \quad (1)$$

- a) N_{D_1} = dispersion number, b) t_B = time (s) needed for phase disengagement to result in a constant height interface, c) ΔZ = total system height (cm), d) g = the gravitational constant (980.665 cm/s²).

A phase diagram for the $(NH_4)_2SO_4/PEG-2000$ system (data from reference 4) is presented in Figure 1. The curve represents the binodial, below which compositions result in a single phase and above which aqueous biphasic systems are observed. The binodial depends on the type of polymer and its molecular weight and concentration, the nature of the inorganic salt and its concentration, and other variables including temperature (5). PEGs preferentially distribute to the top phase and are thus represented as the ordinate. The straight lines connecting two points (nodes) on the binodial are tie lines. Preparing a system

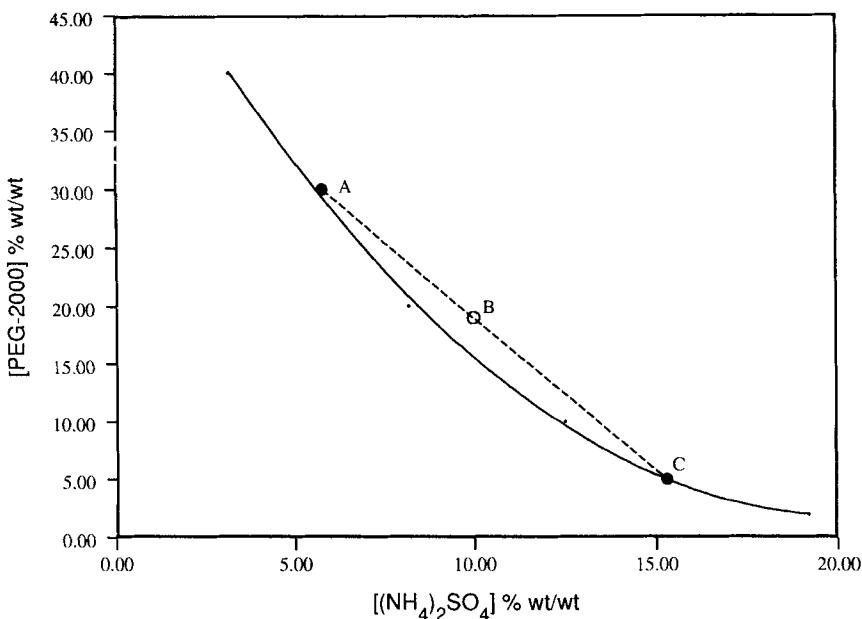


FIGURE 1. $(\text{NH}_4)_2\text{SO}_4$ /PEG-2000 System. (Phase Diagram Data from Reference 4).

by adding the individual components in amounts anywhere along the tie line will result in a total system composition represented by the open circle on the tie line, and individual phase compositions represented by the nodes. The approximate phase ratio can be estimated as the ratio of the length along the tie line from the upper phase composition to the system composition over the system composition to the lower phase ($\overline{AB}/\overline{AC}$). The point on the binodal where the tie line has a length of one point is called the critical point. Concentrations of solutes in each phase are independent of phase volume (1,2).

Our work with PEGs (6) initially concentrated on the complexation chemistry of low molecular weight PEGs with salts of the lanthanides, La, Y, Th, U, Bi, Pb, Cd, and Hg. We have studied the crystal structures of well over two hundred of these

complexes. In our work with triethylene through heptaethylene glycol, we observed the formation of biphasic systems and became interested in the possibility of metal ion extraction with these nontraditional biphasics.

As we learned more about these biphasic systems in order to explain our experimental results, it became obvious that although a significant number of papers have been published concerning aqueous biphasic systems utilizing PEGs for separation of particulates or biomaterials (1,2), very little research has been carried out on the extraction of metal ions from the salt-rich to PEG-rich phases. The majority of the work in metal ion extraction utilizing aqueous biphasic systems has come from Russian laboratories and generally falls into two categories: a) extraction into the PEG-rich phase by addition of a H_2O soluble extractant which partitions to the PEG phase (7-12), or b) extraction by addition of an inorganic anion which enhances extraction of the metal ion into the PEG-rich phase (4,13-14).

This paper focuses on the extraction of actinides (specifically, Th^{4+} , UO_2^{2+} , Pu^{4+} , and Am^{3+}) from SO_4^{2-} and CO_3^{2-} solutions utilizing PEG-2000 and the water soluble complexing dyes arsenazo III, alizarin complexone, and xylenol orange (15). Our results are compared to similar studies (where available) published in the Russian literature.

EXPERIMENTAL

Reagent grade $(NH_4)_2SO_4$ (Baker), K_2CO_3 (Baker), PEG-2000 (Aldrich), NH_4OH (Fisher), and H_2SO_4 (Fisher) were used as received. Arsenazo III, alizarin complexone, and xylenol orange were purchased from Aldrich and used as received.

Stock solutions of 40% wt/wt PEG-2000 and 40% wt/wt $(NH_4)_2SO_4$ or K_2CO_3 were prepared with distilled then deionized H_2O . For the studies involving acid or base, PEG-2000 and $(NH_4)_2SO_4$ stock solutions (40% wt/wt) were prepared in either 1M NH_4OH or 3M H_2SO_4 . When extractants were added, they were prepared by

dissolution in the PEG-2000 stock solutions to a known molarity. Generally, extractant concentrations above 0.01M were too deeply colored to effectively study. Reasonable results were, however, obtained with 0.10M xylene orange.

The systems studied were prepared as follows. A 1 mL aliquot of aqueous salt stock solution was added to 1 mL of PEG-2000 stock solution (with extractant where appropriate) in a glass culture tube. The system was equilibrated prior to use by vortexing for 2 min. followed by 2 min. of centrifugation. This method of system preparation results in approximately equal volumes of salt-rich and PEG-rich phases. Final system compositions were determined to be: a) sulfate system - 21.2% $(\text{NH}_4)_2\text{SO}_4$, 18.8% PEG-2000; b) carbonate system - 22.5% K_2CO_3 , 17.5% PEG-2000.

Tracer levels of the metal ions studied were added to these equilibrated systems then vortexed and centrifuged for 2 min. each. The phases were separated and measured aliquots removed for counting. All distribution ratios were measured at 25°C, and are reproducible to within $\pm 5\%$. The tracer scale experiments were carried out with ^{241}Am , ^{239}Pu , ^{233}U , and ^{230}Th . The plutonium tracer was kept in 7.33M HNO_3 to ensure that it remained in the +4 oxidation state prior to use. The distribution ratios were determined radiochemically from equivalent volumes of each phase as:

$$D_{\text{An}} = \frac{\text{Activity in the PEG-rich phase}}{\text{Activity in the salt-rich phase}}$$

RESULTS AND DISCUSSION

It became apparent from our early results (Table 1) and a few reports in the Russian literature (7-11), that the PEG phase itself would not extract the metal ions investigated from aqueous solution. We noted, however, that certain complexing dyes which

TABLE 1. D_{An} IN THE ABSENCE OF EXTRACTANT

Metal Ion	$(\text{NH}_4)_2\text{SO}_4$ System	K_2CO_3 System
Am^{3+}	0.013	0.12
Pu^{4+}	0.023	0.022
UO_2^{2+}	0.082	0.0065
Th^{4+}	0.040	0.025

quantitatively partition to the PEG-rich phase were reported to accomplish the desired extraction (7-11).

In sulfate media, arsenazo III was reported to separate Th^{4+} and Pu^{4+} from trans-plutonium and lanthanide metal ions when extracted from acid at pH = 2 (7,8,11). The trans-plutonium and lanthanide ions were extracted in the range pH = 3.5-4.5. Am^{3+} and Cm^{3+} were extracted from weakly acidic media in a very narrow range of pH. Separation factors of over 100 are reported for the Th/Eu pair. Stripping was accomplished by adjusting the pH.

The extraction of actinides from carbonate media has also been reported. Alizarin complexone, xylanol orange, and methyl thymol blue were used to extract Am^{3+} , UO_2^{2+} , Np^{5+} , and Pu^{4+} from K_2CO_3 , Na_2CO_3 , or $(\text{NH}_4)_2\text{CO}_3$ /PEG-2000 systems (9,10). The Na_2CO_3 systems were most effective for the +3 and +4 metal ions. K_2CO_3 was better for separation of ions in different oxidation states. Xylanol orange and alizarin complexone extracted the An^{3+} ions but not U^{6+} or Pu^{4+} . An effective separation of actinides and lanthanides was accomplished by addition of an extractant (xylanol orange) and a masking agent (hydroxyethylenediphosphonic acid-HEDPA). Using such a system separation factors of 4.5-5.6 were found for the Am/Eu pair.

With these published hints at the utility of PEG biphasic systems for actinide extraction, we focused our initial studies on two extraction media (the slightly acidic $(\text{NH}_4)_2\text{SO}_4$ system and the

slightly basic K_2CO_3 system) and three complexing dyes (arsenazo III, alizarin complexone, and xylene orange). Our results are represented in Figures 2-7.

Dispersion Numbers

Dispersion numbers (3) were calculated based on separation times for the $(NH_4)_2SO_4$ and K_2CO_3 systems at 25 and 50°C.

Utilizing the system compositions described in the experimental section, separation times of 77s and 118s were observed for the $(NH_4)_2SO_4$ and K_2CO_3 systems, respectively, at 25°C. These correspond to N_{D_1} 's of 6.2×10^{-4} (SO_4^{2-}) and 4.0×10^{-4} (CO_3^{2-}). Separation times (t_B) were dramatically reduced by elevating the temperature to 50°C: SO_4^{2-} : $t_B = 28s$, $N_{D_1} = 1.7 \times 10^{-3}$; CO_3^{2-} : $t_B = 20s$, $N_{D_1} = 2.4 \times 10^{-3}$. Addition of a complexing dye to the systems had little or no effect on the dispersion numbers obtained.

Arsenazo III

Arsenazo III is by far the best extractant from sulfate media for all the metal ions studied. Three metal ions, Th^{4+} , UO_2^{2+} , and Pu^{4+} exhibit almost identical extractant dependencies (Figure 2). Distribution ratios are already well over 10 at $10^{-4}M$ arsenazo III. Am^{3+} is also extracted and exhibits a similar extractant dependency, however, higher concentrations of the extractant are required. Distribution ratios of 10 and above for Am^{3+} are not achieved until the extractant concentration reaches $1.5 \times 10^{-3}M$.

In carbonate media arsenazo III extracts the metal ions studied poorly (Figure 3). Am^{3+} exhibits the highest D values followed by Pu^{4+} and then Th^{4+} and UO_2^{2+} which are nearly identical.

Alizarin Complexone

The extractant dependency data for alizarin complexone from sulfate media are given in Figure 4. Alizarin complexone has been

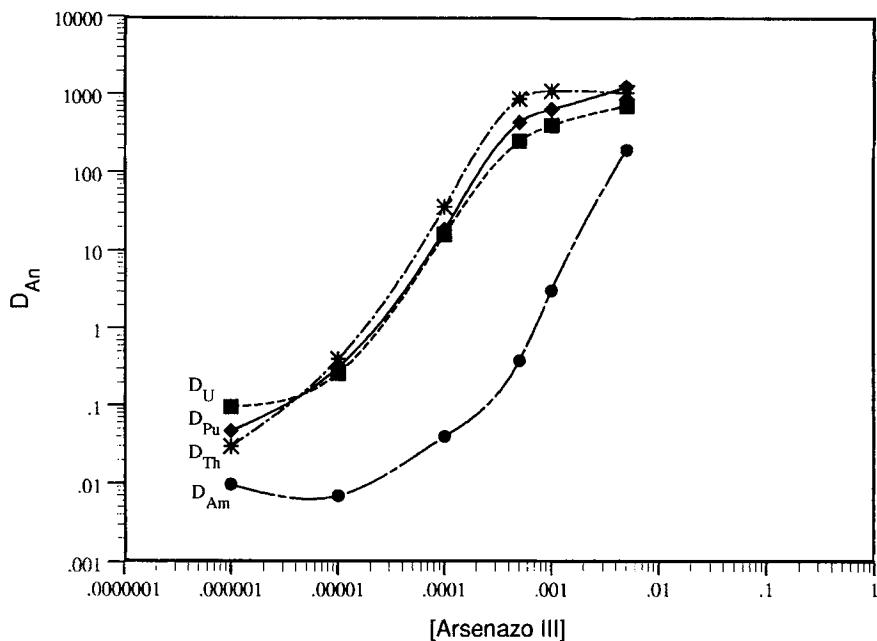


FIGURE 2. D_{An} vs. [Arsenazo III] for the $(\text{NH}_4)_2\text{SO}_4$ /PEG-2000 System.

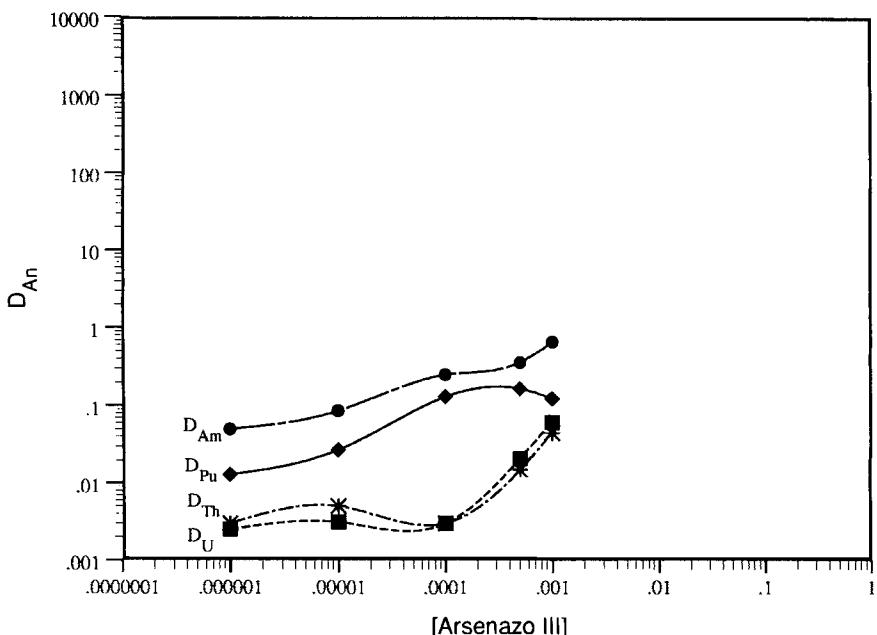


FIGURE 3. D_{An} vs. [Arsenazo III] for the K_2CO_3 /PEG-2000 System.

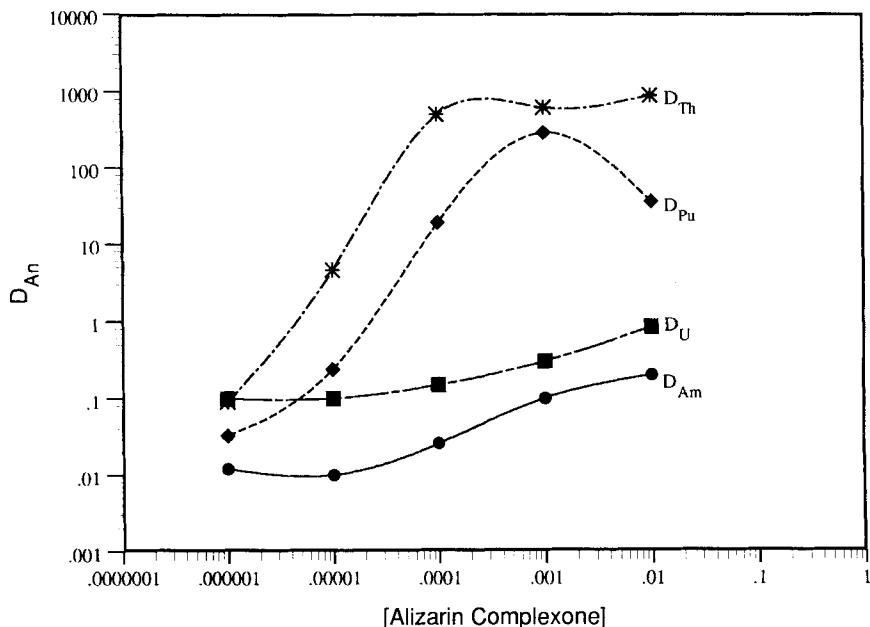


FIGURE 4. D_{An} vs. [Alizarin Complexone] for the $(NH_4)_2SO_4$ /PEG-2000 System.

shown to distinguish between Th^{4+} and UO_2^{2+} . In fact, both $+4$ metal ions (Th^{4+} and Pu^{4+}) are extracted by alizarin complexone.

From carbonate media (Figure 5), Am^{3+} has the highest D values (they were the lowest in SO_4^{2-} systems) followed by Pu^{4+} , UO_2^{2+} , and Th^{4+} . Distribution ratios over one are achieved for Am^{3+} and Pu^{4+} at $5 \times 10^{-5}M$ and $3 \times 10^{-4}M$ alizarin complexone, respectively. The D_U value approaches one only at $10^{-2}M$ extractant, while Th^{4+} would require much higher concentrations of extractant. Extrapolation of our data for Am^{3+} yields a D_{Am} value of 30 at $2 \times 10^{-2}M$ alizarin complexone. A value of 57.8 is reported for this extractant concentration in reference 10.

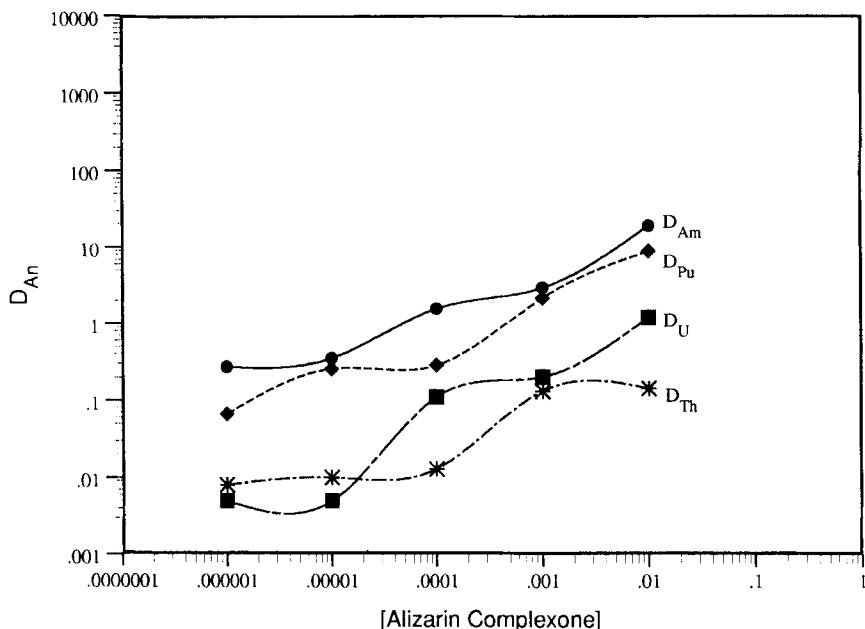


FIGURE 5. D_{An} vs. [Alizarin Complexone] for the K_2CO_3 /PEG-2000 System.

Xylenol Orange

At low concentrations of xylene orange in sulfate media (Figure 6), the extractant dependencies are similar to those observed for alizarin complexone. D values for Th^{4+} and Pu^{4+} increase rapidly, while D_U and D_{Am} are essentially flat. As the concentration of xylene orange is increased, however, the D_{Th} and D_{Pu} curves tail off, while D_{Am} and D_U increase until at 0.1M xylene orange, D_{Am} is actually the highest value.

Again, when changing from SO_4^{2-} media to CO_3^{2-} media, the D_{Am} values go from lowest to highest (Figure 7). The remaining three metals show virtually no extraction dependence and are not extracted. Our results indicate much higher D_{Am} values than reported in reference 10 ($D_{Am} = 32.7$ for $2 \times 10^{-2}M$ xylene orange in reference 10).

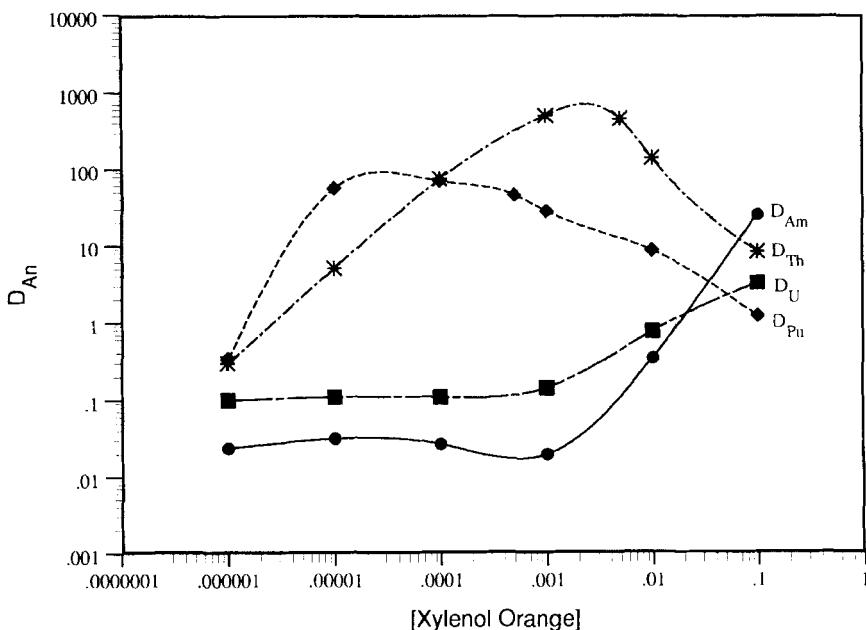


FIGURE 6. D_{An} vs. [Xylenol Orange] for the $(\text{NH}_4)_2\text{SO}_4/\text{PEG-2000}$ System.

pH Dependence

A tremendous amount of research could be carried out investigating these three extractants as a function of pH. Several reports in the literature (7,8,11) suggest pH to be a critical factor in determining the distribution ratios. Optimization of pH could lead to useful systems for the separation of similar metal ions.

We have briefly investigated the effects of base and acid on the D values obtained for the $(\text{NH}_4)_2\text{SO}_4$ system. The effects of base were studied by preparing each stock solution in 1M NH_4OH , while acid side studies were conducted in 3M H_2SO_4 .

Our results are presented in Table 2. It is clear that acid strips the metal ions from the PEG phase and this could serve as a

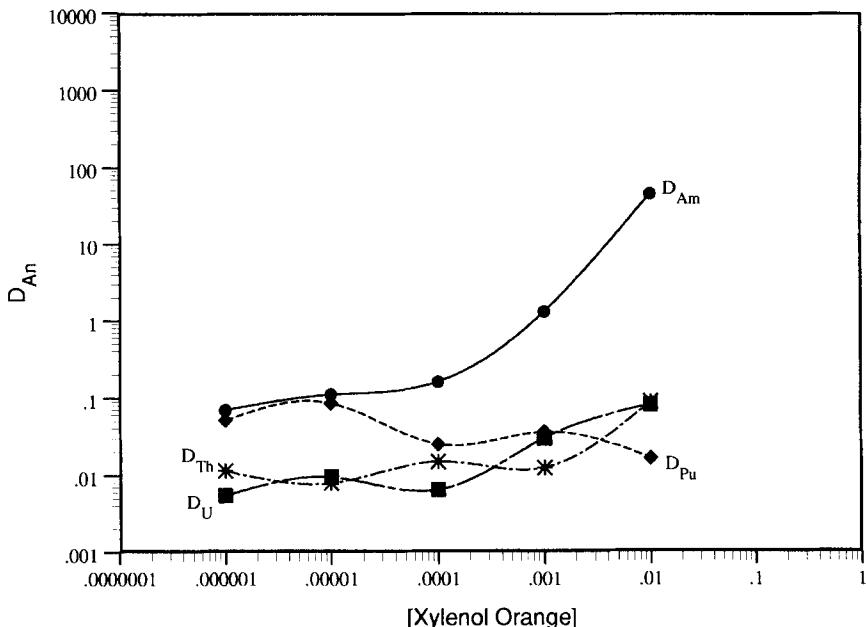


FIGURE 7. D_{An} vs. [Xylenol Orange] for the K_2CO_3 /PEG-2000 System.

reasonable strip stage in any separations process. The effect of 1M NH_4OH is less clear, although in general the D values are higher when base is used. There are four exceptions to this, three of which involve arsenazo III. D values above one are still observed but much lower than the values of 250-870 found without base.

We have been investigating the effects of both acid and base on the biphasic system itself and have observed clues to system behavior that must be fully detailed before the effects of pH can be clearly sorted out. First, high acid concentrations tend to move the binodial toward higher compositions and thus tend to destroy the biphasic. The hydroxide ion on the other hand forms a

TABLE 2. THE EFFECTS OF H_2SO_4 AND NH_4OH ON D_{An}
FOR THE $(NH_4)_2SO_4/PEG-2000$ SYSTEM

Metal Ion	Extractant	Extractant Concentration, M	D_{An}		
			Aqueous	3M H_2SO_4	1M NH_4OH
Am^{3+}	alizarin complexone	1.0×10^{-3}	0.10	0.093	84
Am^{3+}	xylenol orange	1.0×10^{-3}	0.020	0.099	79
Am^{3+}	arsenazo III	5.0×10^{-4}	0.38	0.099	4.4
Pu^{4+}	alizarin complexone	1.0×10^{-3}	280	0.076	400
Pu^{4+}	xylenol orange	1.0×10^{-3}	28	0.070	37
Pu^{4+}	arsenazo III	5.0×10^{-4}	440	0.064	4.3
UO_2^{2+}	alizarin complexone	1.0×10^{-3}	0.30	0.19	100
UO_2^{2+}	xylenol orange	1.0×10^{-3}	0.14	0.19	3.0
UO_2^{2+}	arsenazo III	5.0×10^{-4}	250	0.20	17
Th^{4+}	alizarin complexone	1.0×10^{-3}	610	0.070	440
Th^{4+}	xylenol orange	1.0×10^{-3}	510	0.075	1.6
Th^{4+}	arsenazo III	5.0×10^{-4}	870	0.086	14

biphase by itself and thus serves to salt out more of the PEG. Both effects must be considered in future evaluation of pH effects.

CONCLUSIONS

We have demonstrated the possibility of actinide extraction and separation using aqueous biphasic systems based on PEGs. Our results complement the limited data available in the Russian literature. The use of complexing dyes, however, negates many of

the advantages (e.g., the dyes may be expensive and toxic) of aqueous biphasic systems, and further work in this area should focus on finding other viable H₂O soluble complexing agents.

While we will continue to study this area as time allows, our focus will shift to areas where the unique properties of aqueous biphasic systems present unique opportunities for extraction (i.e., where oil/H₂O compositions are unworkable or undesirable). The areas currently under investigation include extraction of metal ions via the addition of an inorganic anion, extraction from highly alkaline media, and extraction directly into the PEG-rich phase without the addition of any complexant or complexing anion.

ACKNOWLEDGEMENT

We are indebted to the Chemical Separations Group at Argonne National Laboratory led by Dr. E. Philip Horwitz for introducing us to radiochemistry and real world separation processes for the actinides.

REFERENCES

1. P.-Å. Albertson, Partition of Cell Particles and Macromolecules, Almqvist & Wiksell, Stockholm (1971).
2. Partitioning in Aqueous Two-Phase Systems. Theories, Methods, Uses, and Applications to Biotechnology, H. Walter, D.E. Brooks, and D. Fisher, Eds., Academic Press, Orlando (1985).
3. R.A. Leonard, G.J. Bernstein, R.H. Pelto, and A.A. Ziegler, *AICHE Journal*, 27, 495 (1981).
4. T.I. Zvarova, V.M. Shkinev, B.Ya. Spivakov, and Yu.A. Zolotov, *Dokl. Akad. Nauk SSSR*, 273, 107 (1983).
5. D.E. Brooks, K.A. Sharp, D. Fisher, Chapter 2 in reference 2, pp. 11-84.
6. For our latest work see: R.D. Rogers, R.D. Etzenhouser, J.S. Murdoch, and E. Reyes, *Inorg. Chem.*, 30, 1445 (1991) and references therein.

7. N.P. Molochnikova, B.F. Frenkel', B.F. Myasoedov, V.M. Shkinev, B.Ya. Spivakov, and Yu.A. Zolotov, *Radiokhimiya*, 29, 39 (1987).
8. V.M. Shkinev, N.P. Molochnikova, T.I. Zvarova, B.Ya. Spivakov, B.F. Myasoedov, and Yu.A. Zolotov, *J. Radioanal. Nucl. Chem.*, 88, 115 (1985).
9. N.P. Molochnikova, V.Ya. Frenkel', B.F. Myasoedov, V.M. Shkinev, B.Ya. Spivakov, and Yu.A. Zolotov, *Radiokhimiya*, 29, 330 (1987).
10. N.P. Molochnikova, V.M. Shkinev, B.Ya. Spivakov, Yu.A. Zolotov, and B.F. Myasoedov, *Radiokhimiya*, 30, 60 (1988).
11. B.F. Myasoedov, N.P. Molochnikova, V.M. Shkinev, T.I. Zvarova, B.Ya. Spivakov, and Yu.A. Zolotov, in Proceedings of the International Symposium on Actinide and Lanthanide Separations, G.R. Choppin, J.D. Navratil, and W.W. Schulz, Eds., World Scientific, Singapore, 1985, pp. 164-175.
12. N.P. Molochnikova, V.Ya. Frenkel', B.F. Myasoedov, *J. Radioanal. Nucl. Chem.*, 121, 409 (1988).
13. T.I. Zvarova, V.M. Shkinev, G.A. Vorob'eva, B.Ya. Spivakov, and Yu.A. Zolotov, *Mikrochim. Acta*, 3, 449 (1984).
14. T.I. Nifant'eva, V.M. Shkinev, B.Ya. Spivakov, and Yu.A. Zolotov, *Zh. Anal. Khim.*, 44, 1368 (1989).
15. The analytical uses of these dyes for determination of metal ions and some of their physical properties are described in references 16-18.
16. E. Upor, M. Mohai, and Gy. Novak in Comprehensive Analytical Chemistry, G. Svehla, Ed., Vol. XX, Elsevier, Amsterdam, 1985.
17. Z. Holzbecher, L. Divis, M. Kral, L. Sucha, and F. Vlacil in Handbook of Organic Reagents in Inorganic Analysis, John Wiley & Sons, New York, 1976.
18. S.B. Savvin, *Talanta*, 8, 673 (1961).